Abstract

Abstract Carbonate-cemented concretions in Grand Rapids oil sand reservoirs are common with length scales up to several meters wide and high. The concretions can be found embedded in unconsolidated oil sands distributed irregularly within the formation. From a Steam-Assisted Gravity Drainage (SAGD) recovery process point of view, calcite concretions are nonproductive rock which can interfere with the growth of steam chambers. However, depending on the length scales of the spatial distribution, sizes, and shapes of the concretions, thermal dispersion can occur which can potentially enhance heat transfer within the oil sands formation. Thus, although calcite concretions are heat sinks that reduce the oil in place, they could potentially aid in steam chamber conformance. Heterogeneity of the SAGD steam chamber depends on the heterogeneity of the underlying geology. Here, the impact of spatial distributions and size of concretions on the performance of SAGD is examined. The temperature distribution (chamber growth) and steam chamber height and shape are examined. The results reveal that steam chamber growth and conformance is impacted by the presence of calcite concretions. Concretion nearer the SAGD wellpair have the largest impact since they interfere with steam chamber growth from the earliest stages of the process and the impact grows throughout the process yielding cold spots along the wellpair. This provides a means to decide length scales for placement of wellpairs to optimize chamber conformance and SAGD performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call