Abstract

New triphenylamine–benzimidazole type small molecules with different electron-releasing groups were designed and synthesized to investigate their photovoltaic performances in dye sensitized solar cells (DSSCs). Their good visible absorptions covering the 400–535nm in addition to suitable lowest unoccupied molecular orbital (LUMO) energy levels between −3.03 and −3.11eV make good candidates them for DSSC devices. Fluorescence quenching studies of the dyes with pristine titania support the good electron injection to conduction band of TiO2. Time resolved measurements of the dyes in solutions indicate the occurence of charge generation during the excited state. One of the used dyes in DSSC devices, TPA5a, carrying a methoxy group in triphenylamine part of the structure, gave much higher power conversion efficiency (PCE) value of 4.31% as compared to the other derivatives. Device fabricated from TPA5a dye gives good external quantum efficiency (EQE) value above 70% at 460nm. Also, electron impedance spectroscopy (EIS) analysis of the devices gives a good explanation of the understanding of the cell performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.