Abstract

The non-proteinogenic amino acid, alpha-aminoadipate, defines the biosynthetic branch-point of lysine and penicillin biosynthesis in the filamentous fungus, Aspergillus nidulans. Regulation of both pathways was analysed in response to amino acid limitation. The lysF-encoded homoaconitase acts upstream of the alpha-aminoadipate branch point, whereas the lysA gene product, saccharopine dehydrogenase, catalyses the ultimate step of the lysine-specific branch. The lysA gene from A. nidulans was identified and isolated. Amino acid starvation resulted in significantly increased transcription of lysA but not lysF. Starvation-dependent changes in transcription levels of lysA were dependent on the presence of the central transcriptional activator of the cross-pathway control (CPCA). The effect of amino acid starvation under penicillin-producing conditions was analysed in A. nidulans strains with reporter genes for the penicillin-biosynthesis genes, acvA and ipnA, and genetically altered activity of the cross-pathway control. Overproduction of CPCA decreased expression of ipnAand acvA reporter genes and even more drastically reduced penicillin production. This work suggests that, upon amino acid starvation, the cross-pathway control overrules secondary metabolite biosynthesis and favours the metabolic flux towards amino acids instead of penicillin in A. nidulans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call