Abstract
ABSTRACTMolecular analysis of starch structure can be used to explain and predict changes in physical properties, such as water vapor and oxygen barrier properties in packaging materials. Solution casting is a widely used technique to create films from starch formulations. This study compared the molecular properties of these standard films with those of experimental coatings applied to paper in laboratory‐scale and pilot‐scale trials, with all three techniques using the same starch formulation. The results revealed large differences in molecular structure, i.e., cross‐linking and hydrolysis, between films and coatings. The main differences were due to the shorter drying time allowed to laboratory‐scale coatings and the accelerated drying process in pilot trials owing to the high energy output of infrared dryers. Furthermore, surface morphology was highly affected by the coating technique used, with a rougher surface and many pinholes occurring in pilot‐scale coatings, giving lower water vapor permeability than laboratory‐scale coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41190.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.