Abstract

Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

Highlights

  • Nontyphoidal Salmonella (NTS) enterica serovars are the most important causes of bacterial gastroenteritis

  • We recently found that the core genome single nucleotide variant pipeline (cgSNV) method provided superior discriminatory power than traditional methods during outbreak investigations involving Salmonella Heidelberg [2]

  • Pulsefield gel electrophoresis (PFGE) and serotyping was performed at the Laboratoire de Sante Publique du Quebec (LSPQ) following PulseNet Canada (PNC) guidelines

Read more

Summary

Introduction

Nontyphoidal Salmonella (NTS) enterica serovars are the most important causes of bacterial gastroenteritis. Among the NTS serovars, Heidelberg is ranked as the second and third most frequent serovar recovered from clinical cases in Quebec and Canada respectively [1]. In Quebec between 2004 and 2014, 23% of S. Heidelberg clinical isolates were from blood specimens, compared to 7% for S. enterica serovar Enteritidis and 5% for S. enterica serovar Typhimurium, suggesting an increased capacity of this serovar to cause invasive systemic disease [2].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call