Abstract

The Sichuan-Chongqing area in China has complex basin topography and is known for its extremely hot summer weather. In this paper, the mesoscale model WRF version 3.6.1 was used to simulate a period of 1–10 days in advance of the hot weather that occurred in Sichuan-Chongqing on August 10, 2006, to investigate the effect of six different land surface schemes (LSSs) (SLAB, RUC, PX, NOAH, NOAH_MP, and CLM4) on short- and medium-range simulations of high temperatures. The simulated surface air temperatures (SATs) are sensitive to the LSSs and simulation lengths. Specifically, all of the LSSs except PX generally reproduce the observed high temperatures, with CLM4 SATs at 06 UTC (SAT06) the most consistent with measurements whereas the short-range (medium-range) results from NOAH_MP (NOAH) are the worst. Detailed explanations were given in terms of surface fluxes and physical processes. RUC soil moisture initialization appears poor and the LSS reflects too strong gravity drainage. When the LSSs with increased numbers of soil layers are used, the simulated high temperatures are found more consistent with measurements. Additionally, regional sensible heat flux (SHF) does not show high consistency with SAT. The results that differ from the previous studies are partly due to the complex geography and the LSS deficiencies.

Highlights

  • Over the past century, due to the combined effects of human activities and natural factors, Earth’s climate has undergone a significant change in the primary features of warming, and this change has shown an increasing trend in recent years [1]

  • The results show that the parameterized algorithm PX does not apply in the Sichuan-Chongqing area, and PX completely failed to simulate the high-temperature distribution in both the short- and the medium-range experiments

  • For short-term simulations of 1-2 days, the hightemperature distribution of CLM4 is the most consistent with the measurements; RUC and SLAB follow; NOAH is slightly better than NOAH MP, consistent with their threat score (TS)

Read more

Summary

Introduction

Due to the combined effects of human activities and natural factors, Earth’s climate has undergone a significant change in the primary features of warming, and this change has shown an increasing trend in recent years [1]. This trend has led to a wide range of climate anomalies and has especially caused the frequent occurrence of regional extreme high-temperature events. To solve the above problems, we apply 6 LSSs in the mesoscale model WRF 3.6.1 and different simulation lengths (both short and medium range) to simulate high-temperature weather conditions on August 10, 2006, in the SichuanChongqing area.

Model and Experimental Design
Preliminary Analysis of Simulation Differences
Evaluation of Simulated Results
Explanation of Simulated Differences
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.