Abstract

Motivated by geological carbon storage and hydrocarbon recovery, the effect of buoyancy and viscous forces on the displacement of one fluid by a second immiscible fluid, along parallel and dipping layers of contrasting permeability, is characterized using five independent dimensionless numbers and a dimensionless storage or recovery efficiency. Application of simple dimensionless models shows that increased longitudinal buoyancy effects increase storage efficiency by reducing the distance between the leading edges of the injected phase in each layer and decreasing the residual displaced phase saturation behind the leading edge of the displacing phase. Increased transverse buoyancy crossflow increases storage efficiency if it competes with permeability layering effects, but reduces storage efficiency otherwise. When both longitudinal and transverse buoyancy effects are varied simultaneously, a purely geometrical dip angle group defines whether changes in storage efficiency are dominated by changes in the longitudinal or transverse buoyancy effects. In the limit of buoyancy-segregated flow, we report an equivalent, unidimensional flow model which allows rapid prediction of storage efficiency. The model presented accounts for both dip and layering, thereby generalizing earlier work which accounted for each of these but not both together. We suggest that the predicted storage efficiency can be used to compare and rank geostatistical realizations, and complements earlier heterogeneity measures which are applicable in the viscous limit.

Highlights

  • Reservoir properties such as permeability and porosity vary over many length scales, from the kilometre scale down to the micron scale, in response to complex physical and chemical processes, including structural deformation, deposition and diagenesis (Koltermann and Gorelick 1996)

  • This paper is the third of a series that investigates flow in layered porous media and focuses on flow driven by buoyancy and viscous forces

  • Quantifying the system behaviour using storage efficiency makes results directly applicable to geologic CO2 storage (e.g. Cavanagh and Ringrose 2011), and to hydrocarbon recovery using the numerically equivalent recovery efficiency (e.g. Christie and Blunt 2001)

Read more

Summary

Introduction

Reservoir properties such as permeability and porosity vary over many length scales, from the kilometre scale down to the micron scale, in response to complex physical and chemical processes, including structural deformation, deposition and diagenesis (Koltermann and Gorelick 1996). Both the geometrical distribution of reservoir properties and the length scales at which these vary have a profound influence on multiphase flow in the subsurface (Weber 1986). Quantifying the system behaviour using storage efficiency (fraction of the moveable pore volume occupied by the injected phase) makes results directly applicable to geologic CO2 storage (e.g. Cavanagh and Ringrose 2011), and to hydrocarbon recovery using the numerically equivalent recovery efficiency (fraction of the moveable pore volume initially in place recovered) (e.g. Christie and Blunt 2001)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call