Abstract

AbstractDuring the boreal summer, satellite-based precipitation estimates indicate a distinct maximum in rainfall off the west coast of the island of Luzon in the Philippines. Also occurring during the summer months is the boreal summer intraseasonal oscillation (BSISO), a main driver of intraseasonal variability in the region. This study investigates the diurnal variability of convective intensity, morphology, and precipitation coverage offshore and over the island of Luzon. The results are then composited by BSISO activity. Results of this study indicate that offshore precipitation is markedly increased during active BSISO phases, when strong low-level southwesterly monsoon winds bring increased moisture and enhanced convergence upwind of the island’s high terrain. A key finding of this work is the existence of an afternoon maximum in convection over Luzon even during active BSISO phases, when solar heating and instability are apparently reduced due to enhanced cloud cover. This result is important, as previous studies have shown in other areas of the tropics afternoon convection over landmasses is a key component to offshore precipitation. Although offshore precipitation is maximized in the evening hours during active phases, results indicate that precipitation frequently occurs over the ocean around the clock (both as organized systems and isolated, shallow showers), possibly owing to an increase in sensible and latent heat fluxes, vertical wind shear, and convergence of the monsoon flow with land features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.