Abstract

Synthetic helical peptides are valuable scaffolds for the development of modulators of protein-protein interactions involving helical motifs. Backbone-to-side chain or side chain-to-side chain constraints have been and still are intensively exploited to stabilize short α-helices. Very often, these constraints have been combined with backbone modifications induced by Cα-tetrasubstituted, β-, or γ-amino acids, which facilitate the α-peptide or α/β/γ-peptide adopting an α-helical conformation. In this work, we investigated the helical character of octapeptides that were cyclized by a Lys-Asp-(i,i+4)-lactam bridge. We started with two sequences extracted from the helix-loop-helix region of the Id proteins, which are inhibitors of cell differentiation during development and in cancer. Nineteen analogs containing the lactam bridge at different positions and displaying different amino acid core triads (i+1,2,3) as well as outer residues were prepared by solid-phase methodology. Their conformation in water and water/2,2,2-trifluoroethanol mixtures was investigated by circular dichroism (CD) spectroscopy. The cyclopeptides could be grouped in helix-prone and non-helix-prone structures. Both the amino acid core triad (i+1,2,3) and the pendant residues positively or negatively affected the formation of a helical structure. Computational studies based on the NMR-derived helical structure of a cyclopeptide containing Aib at position (i+2) of the triad were generally in agreement with the secondary structure propensity of the cyclopeptides observed by CD spectroscopy. In conclusion, the Lys-Asp-(i,i+4)-lactam bridge may succeed or fail in the stabilization of short helices, depending on the primary structure. Moreover, computational methods may be valuable tools to discriminate helix-prone from non-helix-prone peptide-based macrolactams. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.