Abstract

Tin oxide (SnOx) films synthesized by atomic layer deposition (ALD) are widely explored in a range of optoelectronic devices including electrochemical sensors, transistors, and photovoltaics. However, the integrity of the key ALD-SnOx precursor, namely tetrakis(dimethylamido)tin (IV) (TDMASn), and its influence on the properties of ultimate films remain unexplored. Here a significant degradation of TDMASn into bis(dimethylamido)tin(II) via the Sn-imine complex is reported, and its impact on the corresponding films and devices is examined. It is found, surprisingly, that this degradation does not affect the growth kinetics and morphology of ALD-SnOx films. But it notably deteriorates their electronic properties, resulting in films with twice the electrical resistance due to different oxidation mechanisms of the degradation products. Perovskite solar cells employing such films exhibit a significant loss in power conversion efficiency, primarily due to charge transport and transfer losses. These findings urge strategies to stabilize TDMASn, a critical precursor for ALD-SnOx films, or to identify alternative materials to achieve efficient and reliable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.