Abstract
Quantum shell effects drive many aspects of many-body quantal systems and their interactions. Among these are the quasifission reactions that impede the formation of a compound nucleus in superheavy element (SHE) searches. Fragment production in quasifission is influenced by shell effects as a nontrivial manifestation of microscopic dynamics hindering the full equilibration of the composite system to form the compound nucleus. In this Letter, we use the microscopic time-dependent Hartree-Fock (TDHF) theory to study 48Ca+249Bk collisions to investigate the influence of the tensor component of the effective nucleon-nucleon interaction. The results show that the inclusion of the tensor force causes the spherical shell effect to become more prominent, particularly for the neutron number yield whose peak is exactly at magic number N=126. This suggests that the tensor force plays a compelling role in the evolution of dynamical shell effects in nuclear reactions, influencing the competition between spherical and deformed shell gaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.