Abstract

IgM antibodies are arousing considerable interest as biopharmaceuticals. Despite their immunotherapeutic potential, little is known about the impact of environmental conditions on product quantity and quality of these complex molecules. Process conditions influence the critical quality attributes (CQAs) of therapeutic proteins and thus are important parameters for biological safety and efficacy. Here, the results of a systematic study are presented that characterized the influence of temperature and pH on cell-specific productivity and IgM quality attributes. Biphasic temperature and pH shift experiments were performed as batch cultures in DASGIP® bioreactors under controlled conditions and defined by a specific design of experiment (DOE) approach. An internally-developed recombinant IgM producing CHO cell line was used. With respect to product quality, after an initial purification step efforts were focused on pentamer content, nucleic acid (NA) impurities and the glycosylation profile after an initial purification step. All quality attributes were evaluated by densitometric and chromatographic methods. The reduction of cultivation temperature severely reduced IgM titers, while pH variation had no impact. In contrast, IgM quality was not significantly influenced by bioprocessing parameters. Data revealed that an additional purification step is required to reduce the presence of NAs for in vivo applications. In conclusion, the results showed that for the chosen IgM model, IgM012_GL, variation in quality attributes is not caused by the environmental conditions of temperature and pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call