Abstract

Belamcanda chinensis (L.) DC, commonly used with florfenicol in Chinese veterinary clinics for respiratory tract infections, contains the major effective isoflavone, tectoridin (TEC). This study aimed to investigate the impact of TEC co-administration on the pharmacokinetics of florfenicol in vivo. Male rats received oral TEC (50 mg/kg BW) or sterile water for seven days, followed by a single oral dose of florfenicol (25 mg/kg BW) on the 8th day. Non-compartmental methods analysed the pharmacokinetics of florfenicol, while real-time reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analyses measured expression levels of cytochrome P450 (CYP) isoforms in the liver and P-glycoprotein (P-gp) in the jejunum. TEC significantly decreased florfenicol’s AUC(0–∞), MRT(0–∞), t 1/2z, Vz/F, and C max by 24.75%, 18.43%, 55.47%, 43.05%, and 19.48%, while increasing CLz/F by 33.33%. TEC also up-regulated hepatic CYP1A2 and CYP3A1 mRNA expression, as well as intestinal MDR1, by 1.39-fold, 1.85-fold, and 1.65-fold. This coincided with a respective increase in protein expression by 1.37-fold, 1.39-fold, and 1.43-fold. These findings suggest that TEC-induced alterations in the pharmacokinetics of florfenicol may be attributed to increased CYP and P-gp expression. Further investigations are warranted to understand the implications of these findings on the clinical effectiveness of florfenicol in veterinary practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.