Abstract

The impact of CMOS technology scaling, on the tuning range and phase noise performance of mm-wave LC voltage controlled oscillators (LC-VCOs) is presented. As a preliminary step, the fundamental LC-VCO elements (i) tank inductor, (ii) fixed and variable capacitor elements, and (iii) cross-coupled transistor pair are analytically modeled across the frequency range 10–50GHz. These models are then exploited to analyze the tuning range and phase noise revealing the ultimate performance bounds for simultaneously achieving low phase noise and wide tuning range in mm-wave CMOS LC-VCOs across the CMOS technology scaling (from 130nm down to 45nm) are explored. The analysis demonstrates the improvement of the maximum achievable tuning range, phase noise, and figures-of-merit (FoM and FoMT) with the technology down scaling. Finally, the performance trend of the mm-wave CMOS LC-VCOs implemented using both thin and thick gate cross-coupled pair is compared. The analysis indicates that thick gate cross-coupled pair VCOs achieve better phase noise at the expense of power consumption and maximum tuning range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.