Abstract

Soft error rates for triple-well and dual-well SRAM circuits over the past few technology generations have shown an apparently inconsistent behavior. This work compares the heavy-ion induced upset cross-section in 28, 40, and 65 nm dual- and triple-well SRAMs over a wide range of particle LETs. Similar experiments on identical layouts for all these technologies along with 3-D TCAD simulations are used to identify the dominant mechanisms for single-event upsets. Results demonstrate that the well-engineering strongly influence the single-event response of SRAMs. Layout also plays an important role and the combined effects of well-engineering and layout determine the soft-error sensitivity of SRAMs fabricated in advanced technology nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.