Abstract

Leakage estimation is an important step in nano-scale technology digital design flows. While reliable data exist on leakage trends with bulk CMOS technology scaling in stand-alone devices and circuits, there is a lack of public domain results on the effect of scaling on leakage power consumption for a complete standard cell set. We present an analysis on a standard cell library applying a logic-level estimation model, supported by SPICE BSIM4 comparison. The logic-level model speedup over SPICE is >103 with average accuracy below 1% error. We therefore explore the effects of scaling on the whole standard cell set with respect to different leakage mechanisms (sub-threshold, body, gate) and to input pattern dependence. While body leakage appears to be dominant, sub-threshold leakage is expected to increase more than other components with scaling. Detailed data of the whole analysis are reported for use in further research on leakage aware digital design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.