Abstract

The total-dose radiation tolerance of 32-nm nFETs is investigated. nFETs built in 32-nm RF-CMOS-on-SOI technology with high-k dielectrics show increased off-state leakage current and electron trapping in the gate oxide. The impact of CMOS-on-SOI technology scaling (from 65-nm to 32-nm) on the total-dose radiation tolerance and hot-carrier reliability (HCR) is investigated through both experiments and supporting TCAD simulations. The 32-nm nFETs exhibit less total-dose degradation compared to 45-nm nFETs. However, the hot-carrier degradation increases as the technology scales. An interplay of electric-field in the gate oxide and impact ionization in the channel region is responsible for the observed differences in the degradation mechanisms for the three technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.