Abstract
The pharmacokinetics (PK) of hetrombopag were found to be nonlinear across evaluated dose ranges. The aim of this study was to develop a mechanism-based population pharmacokinetic/pharmacodynamic (PopPK/PD) model and to provide a reasonable expected therapeutic dose for a future confirmatory clinical study of hetrombopag. Nonlinear mixed-effects modelling was performed using pooled 2168 hetrombopag concentrations and 1526 platelet counts from 72 healthy subjects and 32 chronic idiopathic thrombocytopenic purpura (ITP) patients from two phase I studies and one phase II study. The final model was evaluated via goodness-of-fit plots, visual predictive check and nonparametric bootstrap. Simulations from the validated PopPK/PD model were used to devise an expected therapeutic dose for later confirmatory clinical study. The pharmacokinetic data of hetrombopag were well described by a modified target-mediated drug disposition (TMDD) model with dual sequential first-order absorption. Mean parameter estimates (interindividual variability) were CL/F 7.66 L/h (63.5%), Vc /F 30.0L (77.2%) and Kdeg 0.693/h (87.1%). The pharmacodynamic profile was well described by a five-compartment lifespan model with four-transit and one-platelet compartments. Simulation results suggested that chronic ITP patients following 10mg once-daily hetrombopag would able to achieve an ideal platelet count level (50-200 × 109 /L). TMDD was the primary reason leading to nonlinear PK profile of hetrombopag. Our PK/PD modelling and simulation results support 10mg once-daily as the recommended therapeutic dose for chronic ITP patients in subsequent confirmatory clinical study of hetrombopag.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.