Abstract
Microbial surface thermodynamics correlated with bacterial transport in saturated porous media. The surface thermodynamics was characterized by contact-angle measurement and the wicking method, which was related to surface free energies of Lifshitz-van der Waals interaction, Lewis acid-base interaction, and electrostatic interaction between the bacteria and the medium matrix. Transport of three different strains of bacteria present at three physiological states was measured in columns of silica gel and sand from the Canadian River Alluvium (Norman, OK, USA). Microorganisms in stationary state had the highest deposit on solid matrix, compared with logarithmic and decay states. The deposition correlated with the total surface free energy (DeltaG132TOT) and the differences in DeltaG132TOT were mainly controlled by the Lewis acid-base interaction. Infrared spectroscopy showed that the increased deposition correlated with an increase in the hydrogen-bonding functional groups on the cell surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.