Abstract

Heat transfer characteristics are investigated in natural convection flow of water-based nanofluid near a vertical rough wall. The analysis considers five different nanoparticles: silver, copper, alumina, magnetite, and silica. The concentration has been limited between 0-20% for all types of nanoparticle. The governing equations are modeled using the Boussinesq approximation and Tiwari and Das models are utilized to represent the nanofluid. The analysis examines the effects of nanoparticle volume fraction, type of nanofluid, and the wavy surface geometry parameter on the skin friction and Nusselt number. It is observed that for a given nanofluid the skin friction and Nusselt number can be maximized via an appropriate tuning of the wavy surface geometry parameter along with the selection of suitable nanoparticle. Particular to this study cooper is observed to be more productive towards the flow and heat transfer enhancement. In total the metallic oxides are found to be less beneficial as compared to the pure metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.