Abstract

Abstract Atmospheric deposition is an important pathway by which bioactive trace metals are delivered to the surface ocean. The proportions of total aerosol trace metals that dissolve in seawater, and thus become available to biota, are not well constrained and are therefore a key uncertainty when estimating atmospheric fluxes of these elements to surface waters. The aim of this study was to elucidate the main physico-chemical controls on the dissolution of the bioactive trace metals manganese (Mn), cobalt (Co), nickel (Ni) and lead (Pb). To this end, aerosol and surface seawater samples were collected in the Sargasso Sea and subsequently used in sequential seawater leach dissolution experiments to assess the role of aerosol source, seawater temperature, pH, and concentrations of dissolved oxygen and organic ligands, on aerosol trace metal dissolution. Results reveal that changes in key physico-chemical parameters in seawater leaches had little effect on the proportions of Mn, Co, Ni and Pb released from aerosols, although organic ligand amendments impacted the size distribution of aerosol-derived Mn in solution. Conversely, aerosol source and composition had the most significant effect on the dissolution of aerosol Co and Pb, with the most ‘anthropogenic’ aerosol samples displaying the highest fractional solubilities in seawater (up to 58% for Co and 112% for Pb). Fractional solubilities over the range of samples and conditions tested were in the range of 50–104% for Mn, 29–58% for Co, 40–85% for Ni and 67–112% for Pb. A large proportion (36–100%, median 89%) of the total dMn, dCo, dNi and dPb was mobilised rapidly during the first leaching step (5 min), with less dTM being released in leaches 2 through 4. Furthermore, investigation of the size distribution of the aerosol-derived trace metals in seawater showed that dissolved Pb was mostly colloidal (0.02–0.4 μm), dissolved Mn and Co were mostly soluble (

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.