Abstract
The modification of stent surfaces with nano-structures has the potential for limiting late stent restenosis. We report here the patterning of 316L austentitic stainless steel with arrays of nano-pits of two nominal diameters: 120 and 180 nm. These nano-textured surfaces were prepared by focused ion beam milling. The influence of the ion beam current on the nano-features was investigated by scanning electron and atomic force microscopies. The optimum ion beam currents were 280 pA for 120 nm nano-pits and 920 pA for 180 nm nano-pits. The depths of the nano-pits formed were (65 +/- 24) nm (120 nm) and (84 +/- 36) nm (180 nm). This wide distribution of the depths is due to the polycrystalline nature of 316 L stainless steel, which has a strong influence on the milling rates. Endothelial cells were grown in vitro on these substrates for 1, 3 and 5 days. The cells were viable for the duration of the cell culture on the nano-textured substrates. There was no significant difference in the adhesion and the proliferation based on the nano-pit diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.