Abstract

Recent studies have shown that cellular uptake of nanoparticles are strongly affected by the presence and physicochemical characteristics of protein on the surface of these nanoparticles. Hence, We developed surface-modified bovine serum albumin (BSA) nanoparticles (NPs) and evaluated the effect of surface modification on cellular uptake in two types of cancer cells, MCF-7 and A549. BSA NPs were prepared by desolvation method and their surface was modified with apo-transferrin, hyaluronic acid, and Poly(allylamine hydrochloride) (PAH). Morphology of surface-modified BSA NPs was characterized by field emission scanning electron microscopy and differential scanning calorimetry. In vitro-fluorescence release study was performed in phosphate buffered saline with trypsin (100μL/mL (v/v)) for 24h. Confocal microscopy was performed to evaluate cellular uptake followed by fluorescence analysis to evaluate the quantitative uptake of nanoparticles at 0.5, 1, and 2h. Different types of BSA NPs with a mean size of ∼100nm were successfully prepared. In vitro-fluorescent release showed sustained release pattern in surface-modified BSA NPs compared to unmodified BSA NPs. Surface-modified BSA NPs showed more cellular internalization than unmodified BSA NPs. The uptake of PAH-BSA NPs was about 2 times higher than that of unmodified BSA NPs in both cell types. In conclusion, surface-modified BSA NPs showed enhanced cellular uptake, and PAH-BSA NPs are more effective compared to ligand-specific surface-modified BSA NPs (HA-BSA NPs and Tf-BSA NPs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call