Abstract
The influence of the long-range surface forces on the wetting of multi-scale partially wetted surfaces is discussed. The possibility of partial wetting is stipulated by a specific form of the Derjaguin isotherm. Equilibrium of a liquid meniscus inside a cylindrical capillary is used as a model. The interplay of capillary and disjoining pressures governs the equilibrium of the liquid in the nano- and micrometrically scaled pores constituting the relief of the surface. It is shown that capillaries with a radius smaller than a critical one will be completely filled by water, whereas the larger capillaries will be filled only partially. Thus, small capillaries will show the Wenzel type of wetting behavior, while the same liquid inside the large capillaries will promote the Cassie-Baxter type of wetting. Consideration of disjoining/conjoining pressure allows explaining of the “rose petal effect”, when a high apparent contact angle is accompanied with a high contact angle hysteresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.