Abstract
Silica and three mixed silica oxides (silica–alumina, silica–niobia, and silica–zirconia) with nominally 5 wt% of the added element (Al, Nb and Zr) were prepared and used as supports for dispersing monometallic Pt-nanoparticles. The presence of the second oxide component on the silica surface influenced some properties of the final samples, like surface area and acidity. The samples acidity was measured in a recirculation adsorption line with 2-phenylethylamine probe, by performing the titrations both in cyclohexane and in methanol to gather the intrinsic and effective acidity, respectively. The acid site density of silica–alumina was the highest compared with the other oxides; in general, an important decrease of acid sites density was determined in methanol. The order of the effective acidity in methanol was different from that determined in cyclohexane only for silica–zirconia and silica–niobia, confirming the peculiar acidity of Nb-oxide compounds in polar liquids: Colloidal spherical platinum nanoparticles were synthesized and then deposited (1 wt%) on the oxide supports. The obtained metallic nanophases were studied in the reduction of 5-hydroxymethylfurfural (HMF) to valuable chemicals such as dimethylfuran, dimethyltetrahydro-furan, 2-hexanol. In particular, this study focused on the impact of the acidity of the oxide supports on reaction selectivity when 2-butanol is used as solvent. When Pt is not present, Nb-doped silica is the most effective catalyst to di-hydroxymethyl furan diether (DHMFDE) derived from Meerwein–Ponndorf–Verley reaction, maintaining its Lewis character also in protic medium. In the presence of Pt, Nb-doped silica, however, presents the higher selectivity to hydrogenolysis products, 5-methyl furan (5-MF).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.