Abstract
AbstractSatellite observations of the earth’s radiation budget (ERB) are a critical component of the climate observing system. Recent observations have been made from sun-synchronous orbits, which provide excellent spatial coverage with global measurements twice daily but do not resolve the full diurnal cycle. Previous investigations show that significant errors can occur in time-averaged energy budgets from sun-synchronous orbits if diurnal variations are ignored. However, the impact of incomplete diurnal sampling on top-of-atmosphere (TOA) flux variability and trends has received less attention. A total of 68 months of 3-hourly tropical outgoing longwave radiation (OLR) and reflected shortwave radiation (RSW) fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) synoptic (SYN) data product is used to examine the impact of incomplete diurnal sampling on TOA flux variability. Tropical OLR and RSW interannual variability and trends derived from sun-synchronous time sampling consistent with the Terra satellite from 2000 to 2005 show no statistically significant differences at the 95% confidence level with those obtained at 3-hourly time sampling at both 1° × 1° and 10° × 10° regional scales, as well as for tropical means. Monthly, 3-hourly OLR composite anomalies are decomposed into diurnally uniform and diurnal cycle shape change contributions to explain the impact of sampling on observed TOA flux variability. Diurnally uniform contributions to OLR variability account for more than 80% of interannual OLR variability at 1° × 1° spatial scales. Diurnal cycle shape variations are most important in equatorial land regions, contributing up to 50% to OLR variability over Africa. At spatial scales of 10° × 10° or larger, OLR variance contributions from diurnal cycle shape changes remain smaller than 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.