Abstract
We have investigated the effect of sulfur concentration ([S]/[Mo] = 0–10 at.%) on nanostructural, optical and electrical properties of MoO3 thin films grown on glass substrate by spray pyrolysis technique. X-ray diffraction analysis showed that the films were crystallized with mixed structures of MoO3 orthorhombic and MoS2 hexagonal structure. According to FESEM images, the studied films have a sponge-type structure on the order of nanometers. Optical measurements revealed that two distinct inflexions indicative two transitions correspond to MoO3/MoS2 phases in agreement with the XRD analysis. The Hall effect and thermoelectric measurements have shown p-type conductivity, and the free hole density increases with increasing sulfur to molybdenum ratio, in agreement with reflectance spectra of the layers. The obtained value of Seebeck coefficient for MoO3 film with [S]/[Mo] ratio of 8 at.% was as high as 169 μV/K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.