Abstract
To investigate the effects of different forest stands in subtropical China on the communities of soil ammonia-oxidizing microorganisms, we characterized the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the community structure of AOA in soils under stands of broad-leaved (BF) , Chinese fir (CF) , Pinus massoniana (PF) and moso bamboo (MB) forests using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE). The results showed that the AOA gene copy numbers (1.62 x 10(6)-1.88 x 10(7) per gram of dry soil) were significantly higher than those of AOB genes (2.41 x 10(5)-4.36 x 10(5) per gram of dry soil). Significantly higher soil AOA abundance was detected in the MB than that in the CF (P < 0.05), and the latter was significantly higher than that in the BF and PF soils (P < 0.05). There were no significant differences in the soil AOB abundance among the four forest stands. As indicated by DGGE pattern, soil AOA species varied among the four forest stands. There was a difference in the soil AOA communities between the CF and MB stands. The AOA demonstrated a competitive advantage over the AOB in the soils under these major subtropical forests. Soil pH, concentrations of soil available potassium and organic carbon as well as the forest type were the main factors that influence the variation of AOA community structure and diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.