Abstract
The carbon cycle module of the global climate model developed at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) has been extended by implementing the subgrid-scale heterogeneity (SH) of plant functional types (PFTs). It is found that subgrid-scale PFT heterogeneity enhances the photosynthesis intensity and increases vegetation and soil carbon stocks in grass-dominated regions. In forest-dominated regions, photosynthesis is suppressed and vegetation and soil carbon stocks are diminished. Regionally, accounting for subgrid-scale vegetation heterogeneity may lead to twofold changes in these variables. On the whole, accounting for subgrid-scale PFT heterogeneity enhances (suppresses) the carbon flux in regions where it is directed from terrestrial ecosystems to the atmosphere (from the atmosphere to terrestrial ecosystems).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.