Abstract

Cytochrome P450 enzymes (CYP) are important catalyzing proteins involved in the biotransformation of endogenous and xenobiotic compounds. However, their expression and/or activity can be altered by exposure to contaminants such as mycotoxins. In vitro incubations in porcine hepatic microsomes revealed a potent inhibition of the midazolam (CYP3A) biotransformation by T-2 toxin (T-2) (Ki = 27.0 ± 3.97 μM) and zearalenone (ZEA) (Ki = 1.1 ± 0.22 μM). Consequently, the in vivo impact of 2 weeks exposure to T-2 (1,000 μg/kg feed) or ZEA (500 μg/kg feed) on the pharmacokinetics (PK) of midazolam (MDZ) as a CYP3A probe drug was investigated in pigs, and was compared to a control group receiving no mycotoxins. MDZ was chosen as this drug undergoes substantial first-pass metabolism in humans with equal contribution of the intestine and liver. Each pig received a single intravenous (0.036 mg/kg BW) and oral (0.15 mg/kg BW) dose of midazolam (MDZ). For the IV bolus no differences were observed in PK between control and mycotoxins exposed groups. However, oral plasma concentration-time profiles showed quantitative differences in absolute oral bioavailability F[p-value (ANOVA) = 0.022], AUC_0-inf (μg∗h/L) [p-value (ANOVA) = 0.023], Ke (1/h) [p-value (ANOVA) = 0.004], and Ka (1/h) [p-value (ANOVA) = 0.031]. Although only differences in Ke estimates after oral administration reached significance in the post hoc analysis due to inequality of the variances. We hypothesize that the observed trends after ZEA and T-2 exposure are related to the cytotoxic effect of T-2, resulting in an increased absorption rate constant Ka. For ZEA, an inhibition of the CYP3A enzymes is suggested based on the in vitro inhibition potential and increase in oral bioavailability. Further research is required to confirm the current hypothesis.

Highlights

  • Cytochrome P450 enzymes (CYP) are a superfamily of drug metabolizing enzymes facilitating drug elimination (Nebert and Dalton, 2006)

  • Deoxynivalenol inhibited none of the reactions more than 20% without pre-incubation of the mycotoxins, DON was not considered for further investigation

  • DON could not inhibit any of the investigated probe reactions for CYP1A, CYP2A, CYP3A, CYP2C, CYP2D, and CYP2E

Read more

Summary

Introduction

Cytochrome P450 enzymes (CYP) are a superfamily of drug metabolizing enzymes facilitating drug elimination (Nebert and Dalton, 2006). It is well known that xenobiotics can alter the CYP metabolism by inducing or inhibiting these enzymes either directly or through regulating mechanisms (Tanaka, 1998). Such alterations can lead to clinical relevant pharmacokinetic drugdrug and drug-food interactions. Changes in drug disposition can occur when drugs and food-contaminants are co-ingested. Such interactions are far less investigated the previous mentioned drugdrug and drug-food interactions. With deoxynivalenol (DON), zearalenone (ZEA), fumonisin B1 (FB1), and T-2 toxin (T-2) as the most important Fusarium mycotoxins in terms of prevalence and/or toxicity (Streit et al, 2013; Escrivá et al, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call