Abstract

In this paper, we introduced a new figure of merit, overdrive delay product Pod which is defined as the product of overdrive factor (I/Ic0 − 1) and delay of transit time, to evaluate power consumption and switching delay from the viewpoint of perpendicular magnetic tunnel junctions (p-MTJs) switching. The impact of sub-volume excitation on the dependence of overdrive delay product on the junction size and material parameters of p-MTJs in adiabatic regime were clarified. Two strategies to decrease the Pod were proposed. The first strategy is scaling down the junction size free from sub-volume effect. A reduction more than 86% of Pod of p-MTJ with exchange stiffness Aij = 19 pJ/m was realized by scaling down the junction size from 70 to 10 nm when I/Ic0 − 1 = 0.5. The second strategy is to increase Aij to suppress the effect of sub-volume excitation. A 26% reduction of the overdrive delay product was realized by enlarging Aij from 10 to 31 pJ/m with annealing process in the p-MTJ with the diameter of 40 nm. These results indicate that p-MTJs of embedded magnetoresistive random access memory (MRAM) should be scaled down under 30 nm where no sub-volume effect occurs for high speed programing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.