Abstract

This petrographic, mineral chemical, fluid inclusion, and stable isotopic study shows that the distribution of diagenetic modifications and their influence on reservoir quality and heterogeneity in tidal and fluvial sandstones of the Upper Cretaceous Bahi Sandstones in the rift Sirt Basin, NW Libya varies systematically along a series of closely-spaced, dominantly normal faults between the basin margin and more basinward-located areas.Shallow eogenetic modifications resulting from the percolation of meteoric waters, include infiltration of grain coating clays, kaolinitization of detrital silicates, and cementation by dolomite and K-feldspar overgrowths. Mesogenetic alterations (>70 °C, >2 km) include feldspar albitization, illitization of infiltrated clay and kaolinite, conversion of kaolinite into dickite, and cementation by quartz overgrowths (Th 112 °C–134 °C), barite (Th 145 °C–158 °C) and Fe-carbonates. The restriction of barite and Fe-carbonate cements to the basinward-located sandstones suggests formation by hydrothermal fluids along the faults. Extensive feldspar dissolution and formation of moldic pores in sandstones from the basin margin were probably caused by deep percolation of meteoric waters. Results from this study regarding the structural control on the spatial distribution of diagenetic alterations have implications for constraining the flux of pore fluids and, by extension, reservoir quality in analogous epicratonic rift basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.