Abstract

We have studied the impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd68Ni32 and Gd53Al24Co20Zr3 microwires. We find that the presence of structural disorder significantly broadens the paramagnetic to ferromagnetic (PM-FM) transition and the temperature-dependent magnetic entropy change, while the nature of the second-order magnetic transition and long-range ferromagnetic order are not essentially affected by this effect. The large magnetic moment of Gd and the presence of the long-range ferromagnetic order are believed to result in a large magnetic entropy change, which together with the broadening of the PM-FM transition due to structural disorder contribute to a large refrigerant capacity. The excellent magnetocaloric properties of the amorphous microwires make them very promising candidates for active magnetic refrigeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.