Abstract
In this article, the impact of strain relaxation on the emission properties of InGaAs/GaAs multiple quantum wells without strain compensation was examined. Structures consisting of different numbers of quantum wells, namely 4, 8, 12 and 16, on top of distributed Bragg reflectors were grown by molecular beam epitaxy as a typical vertical external cavity surface-emitting laser (VECSEL). The relation between emission parameters in the lasing regime and strain relaxation were investigated. A two-step control of the growth rate allowed for obtaining fixed spectral detuning in all structures regardless of the number of quantum wells. The heterostructures varied in its strain and the microcavity length. The other parameters remained unchanged. In consequence, for the first time a unique set of VECSEL-like heterostructures was investigated. The strain was analyzed by reciprocal space mapping using high-resolution X-ray diffractometry. It was found that the degree of structure relaxation caused by misfit dislocation generation depends linearly on the number of quantum wells. By fitting numerical simulations to the experimental results, we have quantitatively determined the extent to which output power was suppressed by increase in non-radiative recombination arising from misfit dislocations. The non-radiative coefficients were determined. Taking output power as a criterion, we determined the optimal number of QWs to be 12 and the maximum tolerable relaxation value of 0.27 for InGaAs/GaAs VECSEL structures with uniformly distributed quantum wells in microcavity. The dependence of the monomolecular recombination coefficient on structure relaxation has been determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.