Abstract

For a slender long-span bridge, the global aeroelastic and aerodynamic phenomena, such as flutter stability and buffeting response, induced by wind turbulence significantly affect the safety and lifetime performance of the bridge. To investigate these phenomena, a wind tunnel experimental technique with bridge section models is typically required to identify some critical aerodynamic coefficients, such as flutter derivatives, which are dependent on the specific profile (shape) of a bridge cross section and the functions of reduced frequencies. Obviously, this practice is based on the assumption that the shape of the cross section of a long-span bridge does not vary over time. Such an assumption may not remain valid when the stochastic traffic on the bridge is considered, because of the simple fact that the presence of vehicles changes the profile of the bridge cross section. The current study aims to provide some insights through experimental assessment of traffic impacts on flutter derivatives of the modified bridge cross section because of the presence of traffic. A bridge section model with scaled vehicle models distributed on the bridge deck is tested in the wind tunnel following the simulated stochastic traffic flow. Several scenarios are tested to provide insights on the variations of the flutter derivatives over different sections along the bridge and at different time instants for the same location. In addition, some extreme situations, such as under evacuation or serious congestion, are also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call