Abstract

A Cellular Neural Network (CNN) is a highly-parallel, analog processor that can significantly outperform von Neumann architectures for certain classes of problems. Here, we show how emerging, beyond-CMOS devices could help to further enhance the capabilities of CNNs, particularly for solving problems with non-binary outputs. We show how CNNs based on devices such as graphene transistors - with multiple steep current growth regions separated by negative differential resistance (NDR) in their I-V characteristics - could be used to recognize multiple patterns simultaneously. (This would require multiple steps given a conventional, binary CNN.) Also, we demonstrate how tunneling field effect transistors (TFETs) can be used to form circuits capable of performing similar tasks. With this approach, more “exotic” device I-V characteristics are not required - which should be an asset when considering issues such as cell-to-cell mismatch, etc. As a case study, we present a CNN-cell design that employs TFET-based circuitry to realize ternary outputs. We then illustrate how this hardware could be employed to efficiently solve a tactile sensing problem. The total number of computation steps as well as the required hardware could be reduced significantly when compared to an approach based on a conventional CNN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call