Abstract

Lithium-rich layered oxides appear in most roadmaps as next generation Li-ion cathode materials owing to their superior capacity. Within this family, Li2MnO3 represents the archetype material and is often taken as model compound to better understand the complex structural modifications occurring in the first charging cycle. In this work, density functional theory (DFT) calculations have been used to understand the impact of stacking faults in the structural transformations occurring in Li2MnO3 upon delithiation, which are found to hinder the phase transformations leading to structural degradation. The formation energies of both ideal and defective LixMnO3 compositions and the analysis of the encountered ground states have been used to rationalize the predicted differences in terms of structural evolution. From the understanding of the origin in the O1 phase transformation, Mg substitution is proposed as alternative strategy to improve the structural stability in this family of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.