Abstract

When a type-II high Tc superconductor carrying a direct current is subjected to a perpendicular AC magnetic field, a direct current voltage will appear. This phenomenon is called dynamic resistance effect. In general, the high temperature superconducting (HTS) coated conductor (CC) has two stabilizer layers. However, the impacts of two stabilizer layers on the dynamic resistance, DC electrical field, losses, and temperature rise haven't been studied yet. This paper presents the impacts of the stabilizer layers and their resistivity on the dynamic resistance effect and HTS CC tape's thermal-electromagnetic behaviors by using a temperature dependent FEM model. This work reveals that the stabilizer impacts significantly on the dynamic resistance, dc voltage, power loss, and temperature rise. It is will help design high-performance AC magnetic field-controlled PCS and switches based HTS devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call