Abstract
Relativistic TDDFT calculations have been performed employing a novel computational approach to evaluate the impact of spin-orbit coupling (SOC) in the optical and photovoltaic properties of panchromatic Ru(II) dyes for dye-sensitized solar cells (DSCs). The employed computational setup accurately reproduces the optical properties of the investigated dyes, allowing an assessment of the factors responsible for the varying SOC with the dye metal-ligand environment. While for the prototypical panchromatic black dye sensitizer a negligible SOC effect is found, the SOC-induced spectral broadening calculated for the recently reported DX1 dye partly enhances the light-harvesting efficiency and consequently the photocurrent generation in DSCs based on this dye.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.