Abstract

The impact of the precision and direction of motion of a diffractive optical element (DOE) placed inside an optical system on the efficiency of speckle suppression is analyzed. A simple model for calculating the speckle suppression efficiency in systems having a moving DOE and a random diffuser is developed. Simulation results show that at the optimal inclination angles of a regular 2D DOE and at sufficiently rapid displacement (at least N DOE periods), the speckle contrast exhibits a broad minimum. At angles that differ significantly from the optimal values, the speckle contrast varies rapidly and has peaks that exceed the minimum value by several tens of percent. For certain DOE inclination angles, the speckle contrast is several times higher than the minimum value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.