Abstract

Three Ca sources and two application schedules were compared for their effectiveness for increasing tissue Ca concentrations in 170 to 284 g field-grown tubers of `Atlantic' potato (Solanum tuberosum L.). Additional observations were made of internal physiological defects. Paired measures of tissue (periderm and nonperiderm) Ca concentration and internal quality (±hollow heart, ±internal brown spot) were made on individual tubers produced in plots fertilized with N at 224 kg·ha-1 and Ca at either 0 or 168 kg·ha-1, supplied from either gypsum, calcium nitrate or NHIB (9N-0P-0K-11Ca, a commercial formulation of urea and CaCl2). Application of N and Ca at emergence and hilling (nonsplit) was compared to application at emergence, hilling, and 4 and 8 weeks after hilling (split). Tuber yield and grade were unaffected by treatments. Split Ca application (from either calcium nitrate or NHIB) increased mean tuber nonperiderm tissue Ca concentrations and the percentage of tubers with an elevated Ca concentration in both years compared with non-Ca-supplemented controls. Split Ca application also resulted in greater increases in Ca in nonperiderm tissue than nonsplit Ca application in 1994. Although the correlation coefficient between Ca level in periderm and nonperiderm tissue of >400 individual tubers was highly significant in both study years, linear regression analyses suggested the Ca level in the two tissues were poorly related. Split application was associated with a 37% reduction in the incidence of internal tuber defects, relative to nonsplit application in 1994. Calcium application did not affect tuber internal quality based on means analysis, but chi-square analysis suggested that Ca concentration and internal quality of individual tubers may be related. The incidence of internal defects was 16.4% in tubers with nonperiderm tissue Ca >100 μg·g-1 dry weight compared to 10.6% in tubers with nonperiderm tissue Ca >100 μg·g-1 dry weight. These data suggest that 1) it is feasible to increase tuber Ca levels by field applications of moderate amounts of Ca, 2) tuber quality is impacted by N and Ca application schedule, and 3) Ca concentrations in tuber periderm and nonperiderm tissues may be controlled independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call