Abstract

Since its discovery in many heat-treatment foods in 2002, many efforts have been made to reduce acrylamide levels in foods. Methods to reduce acrylamide levels by reducing Maillard reaction products have been considered. However, baking cookies produces acrylamide, a carcinogenic compound. This study aimed to use a new quantitative index and formula for L-asparaginase, glucose oxidase, their 1:1 blending enzymes, baker’s yeast, and green tea powder (0.5 g/kg wheat flour) at a new proposed temperature of 37 °C for 30 min to reduce acrylamide production in biscuits and bakery products using new indicators such as asparagine reduction (%), the asparagine/acrylamide ratio, acrylamide reduction (%), and the asparagine/reducing sugar ratio. The highest acrylamide concentrations were reduced from 865 mg/kg in the blank sample (BT0) to 260 and 215 mg/kg in the mixed enzyme powder (1:1) (BT3)- and BT4-treated samples, respectively. The biscuit samples treated with 0.5 g/kg L-asparaginase reduced the acrylamide levels by approximately 67.63%, while the BT3 samples showed acrylamide levels of 69.94% and asparagine levels of 68.75% and 47%, respectively, compared with percentage in the untreated sample (blank), 95%. This percentage was 54.16% for the BT4 samples. The results showed that acrylamide was formed during baking, and all treatment samples inhibited its formation, making it possible to produce foods with low levels of acrylamide in starchy foods in the food industry at 37 °C for 30 min and preserving the quality and nutritional value of the final product. It can be used as a specialty food or functional food and protects school-agechildren, as well as youth on campus, from approximately 70–80% of their daily intake of acrylamide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.