Abstract

Although oriented aggregation of particles is a widely recognized mechanism of crystal growth, the impact of many fundamental parameters, such as crystallographically distinct interfacial structures, solution composition, and nanoparticle morphology, on the governing mechanisms and assembly kinetics are largely unexplored. Thus, the collective dynamics of systems exhibiting OA has not been predicted. In this context, we investigated the structure and dynamics of boehmite aggregation as a function of solution pH and ionic strength. Cryogenic transmission electron microscopy shows that boehmite nanoplatelets assemble by oriented attachment on (010) planes. The coagulation rate constants obtained from dynamic light scattering during the early stages of aggregation span 7 orders of magnitude and cross both the reaction-limited and diffusion-limited regimes. Combining a simple scaling analysis with calculations for stability ratios and rotational/translational diffusivities of irregular particle shapes, the effects of orientation for irregular-shaped particles on the early stages of aggregation are understood via angular dependencies of van der Waals, electrostatic, and hydrodynamic interactions. Using Monte Carlo simulations, we found that a simple geometric parameter, namely, the contact area between two attaching nanoplatelets, presents a useful tool for correlating nanoparticle morphologies to the emerging larger-scale aggregates, hence explaining the unusually high fractal dimensions measured for boehmite aggregates. Our findings on nanocrystal transport and interactions provide insights toward the predictive understanding of nanoparticle growth, assembly, and aggregation, which will address critical challenges in developing synthesis strategies for nanostructured materials, understanding the evolution of geochemical reservoirs, and addressing many environmental problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.