Abstract

A key design parameter for fixed grid-connected photovoltaic (PV) arrays, the optimal tilt angle, does not only depend on the geographic location but is also directly affected by atmospheric conditions. In this paper, long-term variations of solar radiation (i.e. global solar irradiance, direct horizontal irradiance, diffuse irradiance, and ratios of direct and diffuse irradiance) in Beijing are considered to determine their effect on the optimal tilt angle for a fixed grid-connected PV array. We found that there is a declining trend in global solar irradiance over the past 55 years, mainly caused by the decreased direct horizontal irradiance. In contrast, the decline of diffuse irradiance is not obvious, leading to a considerable decrease in the direct irradiance ratio and consequent increase in the diffuse irradiation ratio. Likewise, the long-term optimal tilt angle shows a downward trend. Compared with the optimum in the 1960s, the optimal tilt angle has decreased by 2° in 2011–2015. These results suggest that the declining trend in the optimal tilt angle is mainly caused by the decrease in direct irradiance ratio, which is highly related to atmospheric conditions. Therefore, the design and construction of PV power stations must consider the variations of atmospheric conditions and solar irradiance to determine the optimal tilt angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.