Abstract

The retention and behavior of two herbicides, metribuzin [4-amino-6-tert-butyl-4, 5-dihydro-3-methylthio-1, 2, 4-triazin-5-one] and DCPA [1, 4-Benzenedicarboxylic acid, 2, 3, 5, 6-tetrachloro-, dimethyl] ester, in runoff and seepage water from agricultural fields were investigated. The objectives of this investigation were to: (i) determine the dissipation and half-life (T 1/2) of metribuzin and DCPA herbicides in soil under three management practices: chicken manure (CM), sewage sludge (SS), and no-mulch native soil (NM); (ii) monitor herbicides residues in runoff and infiltration water following addition of soil amendments; and (iii) determine the impact of soil amendments on the transport of NO3, NH4, and PO4 from soil into surface and subsurface water. Half-life (T 1/2) values of metribuzin were 24, 18, and 12 d in CM, SS, and NM treatments, respectively. Similarly, T 1/2 values of DCPA were greater in CM and SS incorporated soil (45.8 and 52.2 d, respectively) compared to NM native soil (26.2 d). Addition of CM and SS to native agricultural soil increased water infiltration, lowering runoff water volume and herbicide residues in runoff following natural rainfall events. We concluded that soil amendments could be used to intercept pesticide-contaminated runoff from agricultural fields. This practice might provide a potential solution to pesticide contamination of surface and seepage water from farmlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call