Abstract

The Haematococcus pluvialis microalga is known as a main source of astaxanthin with a strong antioxidant capacity and low growth rate. The induction of growth and astaxanthin content was established in H. pluvialis alga using astatic magnetic field (SMF) and tetrasodium pyrophosphate (NaPP) as an inhibitor of isopentenyl pyrophosphate (precursor of astaxanthin biosynthesis) translocator between cytosol to plastid. NaPP (0.3mM), SMF (4 mT), and their combinations were applied to the H. pluvialis cell culture. Results showed chlorophyll a and b were induced in H. pluvialis by SMF treatment, but didn't change significantly under NaPP. Astaxanthin content enhanced under NaPP, SMF, and their combination, and the highest astaxanthin content was obtained under NaPP after 21days (late of stationary phase) of culture. A significant increase in total phenol and flavonoid contents, and activities of phenylalanine ammonia-lyase (PAL) and DPPH were observed under both NaPP and SMF treatments. In contrast to NaPP, SMF decreased H2O2 content, which was associated with more activity of SOD and CAT enzymes. These results revealed that NaPP and SMF might stimulate both phenol and astaxanthin biosynthesis pathways by impacting the activity of enzymes, and inhibition of IPP translocation by NaPP didn't affect astaxanthin biosynthesis at the late growth phase of H. pluvialis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.