Abstract
As the telecommunications sector has reached its mature stage, maintaining existing users has become crucial for service providers. Analyzing the call data records, it is possible to observe their users in the context of social network and obtain additional insights about the spread of influence among interconnected users, which is relevant to churn. In this paper, we examine the communication patterns of mobile phone users and subscription plan logs. Our goal is to use a simple model to predict which users are most likely to churn, solely by observing each user's social network, which is formed by outgoing calls, and churn among their neighbours. To measure the importance of social network parameters with regard to churn prediction, we compare three models: spatial classification, regression model, and artificial neural networks. For each subscriber, we observe three social network parameters, the number of neighbors that have churned, the number of calls to these neighbors, and the duration of these calls for different time periods. The results indicate that using only one or two of these parameters yields results that are comparable or better than the complex models with large amounts of individual and/or social network input parameters that other researchers have proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.