Abstract
An extraordinary recovery characteristic of Pt-nanoparticles from SO 2 poisoning is introduced in this study. Platinum nanoparticles (nano-Pt) modified glassy carbon electrode (nano-Pt/GC) has been compared with polycrystalline platinum (poly-Pt) electrode towards SO 2 poisoning. Two procedures of recovery of the poisoned electrodes were achieved by cycling the potential in the narrow potential range (NPR, 0–0.8 V vs. Ag/AgCl/KCl (sat.)) and wide potential range (WPR, −0.2 to 1.3 V). The extent of recovery was marked using oxygen reduction reaction (ORR) as a probing reaction. SO 2 poisoning of the electrodes changed the mechanism of the oxygen reduction from the direct reduction to water to the stepwise reduction involving the formation of H 2O 2 as an intermediate, as indicated by the rotating ring-disk voltammetry. Using the WPR recovery procedure, it was found that two potential cycles were enough to recover 100% of the activity of the ORR on the nano-Pt/GC electrode. At the poly-Pt electrode, however, four potential cycles of the WPR caused only 79% in the current recovery, while the peak potential of the ORR was 130 mV negatively shifted as compared with the fresh poly-Pt electrode. Interestingly, the NPR procedure at the nano-Pt/GC electrode was even more efficient in the recovery than the WPR procedure at the poly-Pt electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.