Abstract

The zonal-mean transport of tracers on a large scale, such as ozone and water vapor, is predominantly governed by the Brewer-Dobson circulation. However, this transport undergoes modifications influenced by small-scale gravity waves (GW) and turbulence resulting from GW breaking. As these dynamics are not completely resolved in weather and climate models, they necessitate parameterization. Given the significant impact of tracers on the Earth's energy budget and surface climate, understanding their transport variations is crucial for accurate atmospheric modeling. Presently, existing GW parameterization schemes neither account for the direct effects of GW tracer transport nor the enhanced tracer mixing due to GW breaking, but only for the indirect effect by driving the mean meridional circulation. Therefore, it becomes imperative to ascertain how and to what extent these small-scale phenomena modify the large-scale transport of tracers. To address this, we employ wave-resolving simulations, specifically investigating the impact of a three-dimensional wavepacket on tracer distribution using a pseudo-incompressible flow solver. Additionally, we extend a GW parameterization scheme, a Lagrangian ray tracer, to incorporate GW-induced tracer transport. Our research demonstrates the non-negligible direct impact of GW on tracer transport. Furthermore, we possibly discuss the influence of turbulent diffusive mixing on tracers. Our aim is to provide a comprehensive understanding of the intricate processes shaping large-scale tracer transport in the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call