Abstract
This study reconstructed the flow field of a symmetrical variable inlet guide vane in a centrifugal compressor through the passive control method of vane slots. Based on the high-fidelity numerical simulation model verified by experiments, the influence of different slot forms on the flow field was investigated, and the passive control mechanism was revealed. The results demonstrated that the vane slot method can effectively suppress the suction surface separation and broaden the range of low-loss incidence angles. Overall, the 50_30 slotted vane achieves the best flow field control, with a 65.6% reduction in the total pressure loss coefficient and a 2.3° reduction in the deviation angle, respectively, at a 25° incidence angle. The linear characteristics of the pre-swirl grade variation curve with variable inlet guide vane incidence angles are also improved. Furthermore, changing the slot outlet angle has the most significant influence on the aerodynamic performance as it changes the throat width of the location, thereby affecting the flow rate and momentum of the jet. Finally, the impact of the velocity varies in the first self-similarity region on the slotted vane. The results indicate that, in contrast to the baseline vane, the suppression effect of the slot jet on the flow separation improves with the inlet velocity, whereas the deviation angle of the slotted vane declines with the inlet velocity. Meanwhile, the higher the incoming flow velocity, the better the slotted jet can inhibition of flow separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.